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ABSTRACT 
 

Solutions to deterministic optimizing models for supply chains can be very sensitive to the 
formulation of the objective function and the length of the planning horizon. Synthesis of 
optimization and simulation in this research reveals how multi-period optimizing models may be 
counterproductive if traditional accounting of revenue and costs is performed and planning 
occurs with too short a planning horizon. We propose a “value added” complement to traditional 
financial accounting that allows planning to occur with shorter horizons than previously thought 
necessary. The robustness of this “value added” approach is tested by introducing supply chain 
disruptions downstream. 
 
KEYWORDS: Supply Chain Multi-Period Planning, Simulation, Supply Chain Financial 

Accounting and Supply Chain Disruptions. 
 

 
INTRODUCTION 
 
Organizations plan based on expectations, often with a rolling horizon.  They implement 
decisions according to plans early in the planning horizon, experience events that differ from 
expectations, and revise the plans as new information becomes available. In long international 
supply chains, multi-period supply chain (SC) planning problems pose enormous challenges to 
managers (Ghadge et al., 2012; Tang et al., 2012; Wagner and Bode, 2006; Blackhurst et al., 
2005).  When striving to optimize SC performance with a rolling horizon, organizations must 
incorporate slack to allow for risk and impose boundary constraints to ensure that they will be 
positioned well for ongoing operations. They must account for revenues and costs that occur 
outside the planning horizon and consider how long the planning horizon should be.  These 
issues are ignored in most published studies that employ optimization models for tactical and 
operational decisions in SC management (e.g., Ciarallo et al., 1994; Wang and Gerchak, 1996; 
Sabri and Beamon 2000; Lee and Kim, 2002; Leung et al., 2006; Lin and Chen, 2009; You et 
al., 2009; Cardoso et al., 2015 etc.).  
 
Theoretically, the planning horizon of a SC optimizing model should embrace the longest lead 
time upstream, the production cycle time, and the longest lead time downstream.  This may 
result in a model that requires excessive time to solve and support.  If the planning horizon is 
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too short, however, solutions may be counterproductive – especially if revenues and costs are 
recognized in the model when they would actually occur. To resolve this dilemma, we propose a 
“value added” approach in the optimizing model’s objective function and test the robustness of 
this approach with downstream SC disruptions.  
 
MODELING INFRASTRUCTURE 
 
This research deals with a three-echelon SC for bulk products that are distributed through 
warehouses in several different regions. The SC under investigation is predefined and has s 
suppliers, f production facilities, p products, and w warehouses. Customers’ demands are 
aggregated and allocated to the warehouses. The locations of suppliers, production facilities, 
and warehouses are hypothetically given and the transportation of raw materials and finished 
goods is assumed to be done by third-party logistics (3PL) providers (thus avoiding the issues of 
consolidating shipments and related delay due the shipment consolidation process). Research 
data were adapted from the literature (Tsiakis et al., 2001) with amendments made to 
accommodate the purposes of this research. Figure 1 illustrates the supply chain structure.   
 

 
Figure 1 Research Supply Chain Structure 

 
To capture the stochastic elements in the SC, we employ a simulation model with an embedded 
optimizer and perform iterative updates to the plan with a rolling horizon.  This enables us to 
develop strategies that minimize expected costs or maximize expected contributions to profit 
while maintaining a designated level of service with explicit recognition of uncertainty. The 
hybrid model is constructed on the Statistical Analysis System (SAS) 9.4 platform.  
 
A schedule-revision period is chosen.  SC solutions are revised with the optimizing model after 
simulating business activity in the revision period and accounting for stochastic demands and 
transit times for flows in the SC network during the interval.  Updates are applied to initial 
inventories at plants and warehouses and to goods in transit with their expected arrival dates. 
The optimizing model reschedules SC activity (material inflows, production and product 
deliveries) accordingly.   This iterative process continues until the last day in the experimental 
period.  Multiple iterations of the simulation are performed to assess service levels and produce 
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estimates of financial performance using standard cash-flow accounting methods.   Figure 1-1 
illustrates the interactive process of the hybrid model. 
 

 

Figure 2 Interaction Between Simulation and Optimization 
 
With a goal of maximizing net profit contribution, the optimization model includes procurement, 
production, and distribution plans. Buffer inventories (raw materials, finished goods at plants 
and products at warehouses) are built into the SC as part of the risk-mitigation strategy. Supply 
chain risk-event management is represented by allowing finished goods to be shipped directly 
from plants to customers when shortages occur at customer service centers (warehouses) or by 
adding additional shifts when production must be intensified (possibly due to disruptions that 
have occurred in the supply chain). 
  
The analytical model is developed with the following assumptions:  
 
1) The managerial goal is to maximize net contribution to profit.  
2) The profit contribution net of shipping costs is realized when customer demand is satisfied 

from the warehouses or directly from the plant. 
3) Inventory replenishment is recognized at the end of each business day.  
4) Aggregate customer demands for products are registered at the beginning of each day at the 

warehouses. 
5) Suppliers who provide the same raw material are geographically separated (and therefore 

subject to different disruption risks). 
6) Each production facility can produce all products, ship products to all warehouses, and 

perform alternative delivery of finished goods via expedited shipping to satisfy customer 
demand as alternatives to deliveries from warehouses.  

7) Customer demand of product is aggregated and assigned to the designated warehouse every 
day. Alternative deliveries from other warehouses are not considered in this research. 

Daily production at plants, shipments to warehouses, and deliveries to customers are planned 
with consideration of production capacities across plants, lower and upper inventory limits at 
plants and in warehouses, transit times to warehouses, and the possibility of expedited shipping 
from production facilities directly to the customer (at higher cost) or accepting lost sales in the 
event of stockouts at the warehouses. A mixed-integer programming (MIP) model is employed 
to determine “optimal” allocations of production capacity each day and shipments to 
warehouses from which customer demands are satisfied. It allows us to experiment with 
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different planning horizons, intervals for updating plans, start-up conditions, future demands, 
shipping times, etc.  The mathematical model is provided as an appendix.  
 
We compare simulated financial performance using standard cash-flow accounting of costs and 
revenues with a penalty for lost sales.   The corresponding MIP objective function is composed 
as follows: 
 
Standard Objective function:  
 

Maximize [ Net Profit Contribution = (Profit contribution from warehouse deliveries 
+ Profit contribution from alternative deliveries – Costs of lost sales – Product 
inventory holding costs at plants and warehouses – Raw material inventory holding 
costs at plants – Product inventory shortage costs at plants and warehouses – 
Raw material inventory shortage costs at plants – Product inventory overstocking 
costs at plants and warehouses – Raw material inventory overstocking costs at 
plants – Product shipping costs – Product in transit costs – Raw material shipping 
costs – Raw material in transit costs – Plant setup costs – Plant idle costs) ] 

 
With such an objective, there is no incentive in the optimizing model to ship goods to a 
warehouse if they do not reach the destination in time to realize revenue from sales at the 
warehouse (except to meet constraints imposed on ending inventories). To deal with this 
problem, we propose a value-added objective function.  Optimizing with a value-added 
approach, we would recognize revenues from all deliveries to customers when they occur and 
also recognize the benefit derived from shipping goods to warehouses from plants which will not 
be delivered to customers within the current planning horizon.   
 
As an approximation to such a value-added objective, we include potential revenues for 
shipments that occur from production facilities to warehouses if they occur within the minimum 
downstream lead time plus one day of the end of the planning horizon. 
 
Value-Added Objective Function: 
 

Maximize [Net Profit Contribution = (Profit contribution from warehouse deliveries 
to customers  + Profit contribution from alternative deliveries + Expected profit 
contribution from shipments to warehouses within the  minimum downstream 
lead time plus one day of the end of the planning horizon – Costs of lost sales – 
Product inventory holding costs at plants and warehouses – Raw material 
inventory holding costs at plants – Product inventory shortage costs at plants and 
warehouses – Raw material inventory shortage costs at plants – Product 
inventory overstocking costs at plants and warehouses – Raw material inventory 
overstocking costs at plants – Product shipping costs – Product in transit costs – 
Raw material shipping costs – Raw material in transit costs – Plant setup costs – 
Plant idle costs) ]. 

 
To assess the impact of optimizing with one model versus another, we conduct 25 replications 
for each planning scenario and perform statistical analysis to determine the extent to which 
differences in performance metrics are attributable to systematic versus random variation. Each 
replication constitutes 90 days of simulated activity (an entire season) under planning with a 
rolling optimization horizon. In this instance, we revise schedules at the end of each simulated 
day to offer maximum responsiveness to immediate demands. Solutions from the optimizing 
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model for the first day are extracted and saved in a SAS dataset used by the simulation model 
to induce production, flows of finished goods, orders from warehouses and orders of raw 
material in the optimization model. The solutions contain the following information: 

 
1) Raw material inventory level at each plant. 
2) Outstanding orders of raw materials at each plant. 
3) Raw materials in transit to each plant. 
4) Amount of each product produced at each plant. 
5) Finished product inventories at each plant. 
6) Finished product inventories at each warehouse. 
7) Outstanding orders of products at each warehouse. 
8) Finished products in transit at each warehouse. 

The first period’s product demands are presumed to be known with certainty.  For successive 
days, the simulation model generates product demands and delivery dates randomly according 
to specified distributions, implements the MIP solution, and updates datasets that represent the 
new states of the system including finished goods in transit and raw materials in transit.  
Randomly generated delivery dates for raw materials and finished goods are set when orders 
are placed and goods are shipped.  They are not altered as successive iterations occur on the 
rolling horizon.   
 
The MIP model reads information from the updated datasets at the end of the simulated day as 
its new initial conditions and re-solves the problem for the fixed number of days in the planning 
horizon (e.g., Day2 to Day 16 in the second iteration of a 15-day planning horizon).  This 
iterative process continues until it reaches the end of the planning horizon (where the solution is 
developed for Day 90 to Day 104 and just implemented for Day 90).  The optimization model 
and simulation models are thus used in concert to develop SC plans that attempt to maximize 
the net profit contribution while controlling for risk.   
 
EXPERIMENTAL RESULTS 
 
Considering delivery lead times, the SC under study has a theoretical planning horizon of at 
least 18 days. To demonstrate the effect of using the two versions of the MIP model with 
different planning horizons, we perform the simulation with 10-day and 20-day planning horizons 
and generate quarterly reports closely approximating accounting income statements. Table 1 
summarizes financial performance from simulations using the MIP with standard objective 
function and 10-day planning horizon (STDOBJ_H10), value-added objective function with 10-
day planning horizon (VAOBJ_H10), standard objective function with 20-day planning horizon 
(STDOBJ_H20), and value-added objective function with 20-day planning horizon 
(VAOBJ_H20). The value-added approach not only effectively reduced the length of the 
planning horizon, but also outperformed the standard approach with longer planning horizon. 
 
Shortening the planning horizon with the standard objective from 20 days to 10 days resulted in 
a 12% decrease in average daily profit (from $18,299 to $16,114). With the value-added 
objective, the higher level of performance was achieved with either planning horizon. 
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Table 1 – Average Financial Performance with Different MIP Objectives and Planning Horizons 

 
 
To test the robustness of this finding, we imposed disruptions downstream by randomly setting 
20% of finished-product inventories at warehouses to zero (as perhaps could occur with 
damage in processing or shipment or following surges in demand due to interruptions in supply 
chains of competitors).  All other initial conditions were the same as they were in the previous 
simulations.  The random changes in inventory and outages were imposed at the beginning of 
the planning period in each replication. Outages could occur in any product-warehouse 
combination and the amounts of other inventories held in the system could be any value 
between min and max at beginning of each replication.  The results in Table 2 show expected 
deterioration in average performance under each of the four scenarios and the benefits of the 
value-added approach persist. 
 

Table 2 – Comparable Average SC Financial Performance with Disruptions  

 
 
We use average daily gross profit contribution per product to assess SC financial performance 
at the overall level.  The left panel in Table 3 compares the averages resulting from the 
simulations with no disruptions; the right panel compares the averages for simulations with 
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downstream disruptions.   Note in the left panel of Table 3 that the average daily gross profit 
contribution per product when optimizing with VAOBJ_H20 is $3291.38.  The corresponding 
VAOBJ_H20 entry in Table 1 is six times that amount ($19,748.32).   Statistical analysis of the 
findings using ANOVA and pairwise comparisons with Duncan’s multiple range tests (illustrated 
in Table 3) affirm that our findings demonstrate systematic rather than random benefits in 
employing the value-added objective in the MIP formulation. 
 

Table 3 - Duncan Test Results for Average Gross Revenue per Product 

 

                  Without Downstream Disruptions               With Downstream Disruptions 

 
 
CONCLUSION AND FUTURE RESEARCH 
 
Using discrete-event simulation in concert with an MIP optimizing model, we have demonstrated 
the sensitivity of SC performance to the choice of planning horizon when standard cash-flow 
accounting of costs and revenues (with penalty for lost sales) is employed in a SC optimizing 
model.  We produced an alternative MIP formulation that uses a value-added objective which 
proved to be much more robust.  The advantages of the alternative formulation persist when 
downstream disruptions are imposed randomly.   
 
Of course, disruptions can occur anywhere in the SC, and in the future research, the SC under 
investigation can be further stressed by incorporating disruptions upstream or at plants.  With 
our analytical approach, researchers can test the effectiveness of combining routine SC risk 
reduction strategies with strategies for managing adverse events.  The platform created in this 
research can facilitate the investigation of possible changes in demand patterns, 
interrelationships among stochastic elements, and possibilities of disruptive events. 
 
APPENDIX 
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Set notation employed 
 

Set Description 

R{r} Set of raw materials 

S{s} Set of suppliers 

F{f} Set of production facilities 

P{p} Set of products 

W{w} Set of warehouses 

D{d} Set of days in planning horizon 

SR{r} Set of suppliers for raw material r 

RP{p} Set of raw materials used in producing product p 

PF{f} Set of products produced in production facility f 

PR{r} Set of products require raw material r for production 

RF{f} 
Set of raw materials used in producing products at production 

facility f 

PW{w} Set of products distributed through warehouse w 

WP{p} Set of warehouses to which product p is delivered 

DRMS {r, s, f} 
Set of days on which raw material r from supplier s is scheduled 

to arrive at production facility f 

DFGS {p, f, w} 
Set of days on which product p from production facility f is 

scheduled to arrive at warehouse w 
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Optimization Model Parameters  
 

Parameter                             Description 

mrRrPp Units of raw material r required to produce one unit of product p 

mininvPpFf Minimum inventory of product p desired at production facility f 

maxinvPpFf Maximum inventory of product p desired at production facility f 

mininvRrFf 
Minimum inventory of raw material r desired at production facility 

f 

maxinvRrFf 
Maximum inventory of raw material r desired at production 

facility f 

ShtPenaltyRrFf 
Daily penalty ($ per unit) for shortage of raw material r inventory 

at production facility f 

ShtPenaltyPpFf 
Daily penalty ($ per unit) for shortage of product p inventory at 

production facility f 

ShtPenaltyPpWw 
Daily penalty ($ per unit) for shortage of product p inventory at 

warehouse w 

OvrPenaltyRrFf 
Daily penalty ($ per unit) for excess raw material r inventory at 

production facility f 

OvrPenaltyPpFf 
Daily penalty ($ per unit) for excess of product p inventory at 

production facility f 

OvrPenaltyPpWw 
Daily penalty ($ per unit) for excess of product p inventory at 

warehouse w 

mininvPpWw 
Minimum inventory of product p desired at warehouse w 

(including outstanding orders) 

maxinvPpWw 
Maximum inventory of product p desired at warehouse w 

(including outstanding orders) 
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dempwhsew 
Assigned aggregated average daily demand for product p at 

warehouse w 

shiptimeFfWw  

δ (f, w) 
Shipping time (days) from production facility f to warehouse w 

shiptimeSsFf    

θ (s, f) 
Shipping time (days) from supplier s to production facility f 

spcFf 

Production setup costs at production facility f incurred each day 

that production occurs (including idle cost associated with set up 

time) 

pcPpWw Unit profit contribution of product p delivered from warehouse w 

scPpFfWw 

Supply cost per unit of product p from production facility f to 

warehouse w (including variable production cost at production 

facility f and shipping cost from production facility f to warehouse 

w, but excluding raw material and goods in transit costs) 

scRrSsFf 

Supply cost per unit of raw material r from supplier s to 

production facility f (including ordering and shipping costs, but 

excluding raw material in transit costs) 

scPpWw 
Shipping cost per unit of product p from warehouse w to 

customer 

icPpFf 
Inventory carrying cost for finished product p at production 

facility f 

icRrFf Inventory carrying cost of raw material r at production facility f 

itcPpFfWw 
Unit cost of carrying product p in transit from production facility f 

to warehouse w 
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itcRrSsFf 
Unit cost of raw material r in transit from supplier s to production 

facility f 

acPpFfWw 
Unit cost of alternative supply from production facility f for 

product p at warehouse w 

icPpWw Inventory carrying cost for product p at warehouse w 

opcostPpWw Unit opportunity cost of lost sales for product p at warehouse w 

DemPpWwDd Demand for product p (units) at warehouse w on day d 

sutimePpFf Product p production setup time at production facility f 

idlePenFf Idle penalty cost per hour at production facility f 

MXprodFf Maximum daily throughput (units) at production facility f 

minsysinvPp 
Desired minimum system inventory of product p (across all 

production facilities) 

maxsysinvPp 
Desired maximum system inventory of product p (across all 

production facilities) 

 

The algebraic formulation of the problem is presented below: 
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                          𝑀𝑎𝑥 ∑  { ∑ ∑  [ ( 𝑝𝑐𝑃𝑝𝑊𝑤 − 𝑠𝑐𝑃𝑝𝑊𝑤) ∗ 𝐷𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑

𝑝∈𝑃𝑊{𝑤}𝑤∈𝑊{𝑤}𝑑∈𝐷{𝑑}

+ ∑ (𝑝𝑐𝑃𝑝𝑊𝑤 − 𝑎𝑐𝑃𝑝𝐹𝑓𝑊𝑤) ∗ 𝐴𝑙𝑡𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 − 𝑜𝑝𝑐𝑜𝑠𝑡𝑃𝑝𝑊𝑤 ∗ 𝐿𝑆𝑃𝑝𝑊𝑤𝐷𝑑

𝑓∈𝐹{𝑓}

− 𝑖𝑐𝑃𝑝𝑊𝑤 ∗ 𝐼𝑛𝑣 𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝑊𝑤 ∗ 𝑈𝑆𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝑊𝑤

∗ 𝑂𝑆𝑃𝑝𝑊𝑤𝐷𝑑]  

− ∑  [ ∑  (𝑖𝑐𝑃𝑝𝐹𝑓 ∗ 𝐼𝑛𝑣𝑃𝑝𝐹𝑓𝐷𝑑 + 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝐹𝑓 ∗ 𝑈𝑆𝑃𝑝𝐹𝑓𝐷𝑑

𝑝∈𝑃{𝑝}𝑓∈𝐹{𝑓}

+ 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑃𝑝𝐹𝑓 ∗ 𝑂𝑆𝑃𝑝𝐹𝑓𝐷𝑑

+ ∑  (𝑠𝑐𝑃𝑝𝐹𝑓𝑊𝑤 ∗ 𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 + 𝑖𝑡𝑐𝑃𝑝𝐹𝑓𝑊𝑤 ∗ 𝑇𝑟𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑)

𝑤∈𝑊{𝑤}

) + 𝑠𝑝𝑐𝐹𝑓

∗ 𝑆𝑈𝐹𝑓𝐷𝑑 + 𝑖𝑑𝑙𝑒𝑃𝑒𝑛𝐹𝑓 ∗ 𝑖𝑑𝑙𝑒𝐹𝑓𝐷𝑑

+ ∑ ( 𝑖𝑐𝑅𝑟𝐹𝑓 ∗ 𝐼𝑛𝑣𝑅𝑟𝐹𝑓𝐷𝑑 + 𝑆ℎ𝑡𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑟𝐹𝑓 ∗ 𝑈𝑆𝑅𝑟𝐹𝑓𝐷𝑑

𝑟∈𝑅𝑃{𝑝}

+ 𝑂𝑣𝑟𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑟𝐹𝑓 ∗ 𝑂𝑆𝑅𝑟𝐹𝑓𝐷𝑑

+ ∑ (𝑠𝑐𝑅𝑟𝑆𝑠𝐹𝑓 ∗ 𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 + 𝑖𝑡𝑐𝑅𝑟𝑆𝑠𝐹𝑓 ∗ 𝑇𝑟𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑)

𝑠∈𝑆𝑅{𝑟}

)  ]  } 

 

Subject to the following constraints: 

1. Product p can’t be produced at production facility f on day d unless the necessary set up is 
completed (constraint STPpFfDd). For each production facility and day for each 𝑝 ∈ 𝑃𝐹{𝑓}, 

𝑃𝑟𝑜𝑑𝑃𝑝𝐹𝑓𝐷𝑑    ≤   𝑀𝑥𝑝𝑟𝑜𝑑𝑃𝑝𝐹𝑓  ∗  𝑆𝑈𝑃𝑝𝐹𝑓𝐷𝑑 .  

2. Consumption of raw materials r at production facility f on day d cannot exceed the quantities 
available at beginning of day d (constraint UBRrFfDd). For each production facility and day for 

each 𝑝 ∈ 𝑃𝑅{𝑟} and each 𝑟 ∈ 𝑅𝐹{𝑓}, 

∑ 𝑚𝑟𝑅𝑟𝑃𝑝 ∗ 𝑃𝑟𝑜𝑑𝑃𝑝𝐹𝑓𝐷𝑑 ≤ 𝐼𝑛𝑣𝑅𝑟𝐹𝑓𝐷𝑑

𝑝∈𝑃𝑅{𝑟}

. 
 

Notice that if units of raw material r required to produce each unit of product p are significantly 
different across production facilities because of labor, technology or machinery etc., then raw 
material conversion rates could be defined as mrRrPpFf. For this research, we assume that there 
is no significant difference or bill of materials for product p produced at each production facility. 
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This constraint also assumes that raw materials received during the day will not be available for 
production until the next day. 

3. Sum of production times used on day d at production facility f cannot exceed total 
available operating time (constraint TPRODFfDd). For each production facility and day,  

∑  ( (
1

𝑢𝑛𝑖𝑡𝑝𝑒𝑟ℎ𝑟
) ∗ 𝑃𝑟𝑜𝑑𝑃𝑝𝐹𝑓𝐷𝑑 + 𝑠𝑢𝑡𝑖𝑚𝑒𝐹𝑓 ∗ 𝑆𝑈𝐹𝑓𝐷𝑑 + 𝐼𝑑𝑙𝑒𝐹𝑓𝐷𝑑)

𝑝∈𝑃𝐹{f}

= 8 ∗ 𝑚𝑎𝑥𝑠ℎ𝑖𝑓𝑡𝑠 

 

SUFfDd = [0,1]. If setup times are negligible, these binary constraints may be relaxed. 

4. Production of product p at production facility f on day d cannot occur unless the production 
facility is activated for production on that day (constraint FSUFfDd). For each production facility 

and day for each 𝑝 ∈ 𝑃𝐹{𝑓}, 

∑ 𝑆𝑈𝑃𝑝𝐹𝑓𝐷𝑑 ≤ 𝑆𝑈𝐹𝑓𝐷𝑑 .

𝑝∈𝑃𝐹{𝑓}

 
 

SUPpFfDd values attribute set up time to the production of individual product. If separate set up 
were required for each product, these equations would be replaced with sets of equations for 
set up of individual product. For this research, we assume that there is a single setup required if 
a production facility is to be activated for production during the day. SUPpFfDd in this formulation 
allocates production capacity to individual products. We, therefore, add a constraint that creates 
a single binary variable for each production facility during the day that accounts for setup to 
activate and shut down the production at production facility. 

 

5. Raw materials inventory balance at production facility f (constraint IBRrFfDd). For each 
production facility and day for each 𝑟 ∈ 𝑅𝐹{𝑓} and each 𝑠 ∈ 𝑆𝑅{𝑟}, 

𝐼𝑛𝑣𝑅𝑟𝐹𝑓𝐷𝑑+1 = 𝐼𝑛𝑣𝑅𝑟𝐹𝑓𝐷𝑑 − ∑  

𝑝∊𝑃𝑅{𝑟}

𝑚𝑟𝑅𝑟𝑃𝑝  ∗  𝑃𝑟𝑜𝑑𝑃𝑝𝐹𝑓𝐷𝑑  

+  ∑ (

𝑠∈𝑆𝑅{𝑟}

𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑−𝜃(𝑠,𝑓) + 𝐼𝑡𝑠𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑). 
 

Note that the ItsRrSsFfDd variables are defined only for (r, s, f, d) combinations where there are 
raw materials in transit at beginning of the planning horizon and are scheduled to arrive at 
production facility f on day d for each 𝑑 ∈ 𝐷𝑅𝑀𝑆{𝑟, 𝑠, 𝑓}. 

 
6. Place order of raw material r at beginning of day d to ensure safety stock at production facility 
f (constraint MNORrFfDd). For each production facility and day for each 𝑟 ∈ 𝑅𝐹{𝑓} and each 𝑠 ∈
𝑆𝑅{𝑟},  

∑ (𝑂𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 + 𝑂𝑂𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑) + 𝐼𝑛𝑣𝑅𝑟𝐹𝑓𝐷𝑑

𝑠∈𝑆𝑅{𝑟}

≥ 𝑚𝑖𝑛𝑖𝑛𝑣𝑅𝑟𝐹𝑓 − 𝑈𝑆𝑅𝑟𝐹𝑓𝐷𝑑−1. 
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Note that under storage of raw materials could occur at the beginning of Day 1. 
 

7. Restrict order of raw material r at beginning of day d to prevent overstock at production facility 
f (constraint MXORrFfDd ). For each production facility and day for each 𝑟 ∈ 𝑅𝐹{𝑓} and each 𝑠 ∈
𝑆𝑅{𝑟},  

∑ (𝑂𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 + 𝑂𝑂𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑) + 𝐼𝑛𝑣𝑅𝑟𝐹𝑓𝐷𝑑

𝑠∈𝑆𝑅{𝑟}

≤ 𝑚𝑎𝑥𝑖𝑛𝑣𝑅𝑟𝐹𝑓 + 𝑂𝑆𝑅𝑟𝐹𝑓𝐷𝑑−1. 
 

Note that over storage of raw materials could occur at the beginning of Day 1. 
 

8 & 9. Update under storage (constraint AUSRrFfDd) and overstocking (constraint AOSRrFfDd) of 
raw material r at production facility f at the end of day d.  For each production facility and day for 
each 𝑟 ∈ 𝑅𝐹{𝑓} and each 𝑠 ∈ 𝑆𝑅{𝑟}, 

𝐼𝑛𝑣𝑅𝑟𝐹𝑓𝐷𝑑 + 𝑈𝑆𝑅𝑟𝐹𝑓𝐷𝑑 − ∑ 𝑚𝑟𝑅𝑟𝑃𝑝 ∗ 𝑃𝑟𝑜𝑑𝑃𝑝𝐹𝑓𝐷𝑑

𝑝∈𝑃𝑅{𝑟}

+ ∑ (𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑−𝜃(𝑠,𝑓) + 𝐼𝑡𝑠𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑)

𝑠∈𝑆𝑅{𝑟}

≥ 𝑚𝑖𝑛𝐼𝑛𝑣𝑅𝑟𝐹𝑓 . 
 

𝐼𝑛𝑣𝑅𝑟𝐹𝑓𝐷𝑑 − 𝑂𝑆𝑅𝑟𝐹𝑓𝐷𝑑 − ∑ 𝑚𝑟𝑅𝑟𝑃𝑝 ∗ 𝑃𝑟𝑜𝑑𝑃𝑝𝐹𝑓𝐷𝑑

𝑝∈𝑃𝑅{𝑟}

+ ∑ (𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑−𝜃(𝑠,𝑓) + 𝐼𝑡𝑠𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑)

𝑠∈𝑆𝑅{𝑟}

≤ 𝑚𝑎𝑥𝐼𝑛𝑣𝑅𝑟𝐹𝑓 . 
 

Note that the ItsRrSsFfDd variables are defined only for (r, s, f, d) combinations where there are 
raw materials in transit at beginning of the planning horizon and are scheduled to arrive at 
production facility f on day d for each 𝑑 ∈ 𝐷𝑅𝑀𝑆{𝑟, 𝑠, 𝑓}. 

 
10. Total units of raw material r shipped from supplier s at the end of day d to satisfy orders 
acknowledged from production facility f at beginning of that day (constraint DLVRrSsFfDd). For 
each day and each 𝑠 ∈ SR {𝑟} for each production facility, 

𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 ≥   𝑂𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 .  

 
11. Update outstanding orders of raw material r at production facility f at beginning of day d 
(constraint OOURrSsFfDd). For each production facility and day for each 𝑟 ∈ RF {𝑓} and each 𝑑 ∈
𝐷𝑅𝑀𝑆{𝑟, 𝑠, 𝑓},  

𝑂𝑂𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑+1 = 𝑂𝑂𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 + 𝑂𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 − 𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑−𝜃(𝑠,𝑓)

− 𝐼𝑡𝑠𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 . 

Note that the ItsRrSsFfDd variables are defined only for (r, s, f, d) combinations where there are 
raw materials in transit at beginning of the planning horizon and are scheduled to arrive at 
production facility f on day d for each 𝑑 ∈ 𝐷𝑅𝑀𝑆{𝑟, 𝑠, 𝑓}.  OORrSsFfD1 should include sum of the 
ItsRrSsFFDd values for each day with scheduled arrivals. 

 
12. Update raw materials in transit from supplier s to production facility f (constraint RITRrSsFfDd) 
at beginning of day d. For each production facility and day for each 𝑟 ∈ RF {𝑓} and each 𝑑 ∈
𝐷𝑅𝑀𝑆{𝑟, 𝑠, 𝑓}, 
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𝑇𝑟𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑+1 = 𝑇𝑟𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 + 𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 − 𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑−𝜃(𝑠,𝑓)

− 𝐼𝑡𝑠𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 . 

Note that the ItsRrSsFfDd variables are defined only for (r, s, f, d) combinations where there are 
raw materials in transit at beginning of the planning horizon and are scheduled to arrive at 
production facility f on day d for each  𝑑 ∈ 𝐷𝑅𝑀𝑆{𝑟, 𝑠, 𝑓} . TrRrSsFFD1 is set to sum of the 
ItsRrSsFfDd values for each day with scheduled arrivals of raw materials. 

 
13. Place order for product p at the beginning of day d to ensure desired safety stock at warehouse 
w (constraint MNOPpWwDd). For each warehouse and day for each 𝑝 ∈ 𝑃𝑊{𝑤}, 

∑ (𝑂𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 + 𝑂𝑂

𝑓∈𝐹{𝑓}

𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑) + 𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑

≥ 𝑚𝑖𝑛𝑖𝑛𝑣𝑃𝑝𝑊𝑤 − 𝑈𝑆𝑃𝑝𝑊𝑤𝐷𝑑−1. 
 

Note that under storage of products can occur with associated penalty. 

 

14. Restrict order of product p at the beginning of day d to prevent overstock at warehouse w 
(constraint MXOPpWwDd). For each warehouse and day for each 𝑝 ∈ 𝑃𝑊{𝑤},  

∑ (𝑂𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 + 𝑂𝑂

𝑓∈𝐹{𝑓}

𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑) + 𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑

≤ 𝑚𝑎𝑥𝑖𝑛𝑣𝑃𝑝𝑊𝑤 + 𝑂𝑆𝑃𝑝𝑊𝑤𝐷𝑑−1. 
 

Note that over storage of products can occur with associated penalty. 
 

15. Produce sufficient product p across plants to cover orders and provide production system-
wide safety stocks (constraint MNSYSPpDd). For each day for each product across all plants, 

∑ (𝑃𝑟𝑜𝑑

𝑓∈𝐹{𝑓}

𝑃𝑝𝐹𝑓𝐷𝑑 + 𝐼𝑛𝑣𝑃𝑝𝐹𝑓𝐷𝑑)

≥ ∑ ∑ 𝑂𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑

𝑤∈𝑃𝑊{𝑤}𝑓∈𝐹{𝑓}

+ 𝑚𝑖𝑛𝑠𝑦𝑠𝑖𝑛𝑣𝑃𝑝. 
 

 
16. Restrict production of product p across plants on day d to prevent overstock in the production 
system (constraint MXSYSPpDd). For each day for each product across all plants, 

∑ (𝑃𝑟𝑜𝑑

𝑓∈𝐹{𝑓}

𝑃𝑝𝐹𝑓𝐷𝑑 + 𝐼𝑛𝑣𝑃𝑝𝐹𝑓𝐷𝑑)

≤ ∑ ∑ 𝑂𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑

𝑤∈𝑃𝑊{𝑤}𝑓∈𝐹{𝑓}

+ 𝑚𝑎𝑥𝑠𝑦𝑠𝑖𝑛𝑣𝑃𝑝. 
 

 
17. Ship sufficient finished goods from production facility f to cover orders placed at warehouse 
w on day d (constraint DLVPpFfWwDd). For each production facility and day for each p ∈ PF{f} and 
each 𝑝 ∈ 𝑃𝑊{𝑤}, 

𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑   ≥   𝑂𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 . 

 
18 & 19. Update over storage (constraint AOSPpFfDd) and under storage (constraint AUSPpFfDd) 
of product p at production facility f at the end of day d. For each production facility and day for 
each 𝑝 ∈ 𝑃𝐹{𝑓} and each 𝑝 ∈ 𝑃𝑊{𝑤}, 
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𝐼𝑛𝑣𝑃𝑝𝐹𝑓𝐷𝑑 − 𝑂𝑆𝑃𝑝𝐹𝑓𝐷𝑑 + 𝑃𝑟𝑜𝑑𝑃𝑝𝐹𝑓𝐷𝑑

− ∑ (𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 + 𝐴𝑙𝑡𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑) ≤

𝑤∈𝑊𝑃{𝑝}

𝑚𝑎𝑥𝐼𝑛𝑣𝑃𝑝𝐹𝑓 .  

𝐼𝑛𝑣𝑃𝑝𝐹𝑓𝐷𝑑 + 𝑈𝑆𝑃𝑝𝐹𝑓𝐷𝑑 + 𝑃𝑟𝑜𝑑𝑃𝑝𝐹𝑓𝐷𝑑

− ∑ (𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 + 𝐴𝑙𝑡𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑) ≥

𝑤∈𝑊𝑃{𝑝}

𝑚𝑖𝑛𝐼𝑛𝑣𝑃𝑝𝐹𝑓 .  

 
20. Limit shipments of product p from production facility f to warehouses on day d to the amount 
available in production facility inventory (constraint SLPpFFDd). For each production facility and 
day for each 𝑝 ∈ 𝑃𝐹{𝑓} and each 𝑝 ∈ 𝑃𝑊{𝑤}, 

∑ (𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 + 𝐴𝑙𝑡𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑) ≤

𝑤∈𝑊𝑃{𝑝}

𝐼𝑛𝑣𝑃𝑝𝐹𝑓𝐷𝑑 . 
 

This also implies that production of product p during day d will not be available for delivery until 
the next day. 

 
21. Account for inventory balance of products at production facility f at the end of day d (constraint 
IBPpFfDd). For each production facility and day for each 𝑝 ∈ 𝑃𝐹{𝑓} and each 𝑝 ∈ 𝑃𝑊{𝑤}, 

𝐼𝑛𝑣𝑃𝑝𝐹𝑓𝐷𝑑+1 = 𝐼𝑛𝑣𝑃𝑝𝐹𝑓𝐷𝑑 + 𝑃𝑟𝑜𝑑𝑃𝑝𝐹𝑓𝐷𝑑 − ∑ (𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 + 𝐴𝑙𝑡𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑)

𝑤∈𝑊𝑃{𝑝}

. 
 

 
22. Deliver goods from warehouse or alternative source (production facility) to satisfy customer 
demand and acknowledge lost sales if inventory is insufficient (constraint DLVPpWwDd). For each 
warehouse and day for each 𝑝 ∈ 𝑃𝑊{𝑤}, 

𝐷𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑 + 𝐿𝑆𝑃𝑝𝑊𝑤𝐷𝑑 + ∑ 𝐴𝑙𝑡𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑

𝑓∈𝐹{𝑓}

= 𝐷𝑒𝑚𝑃𝑝𝑊𝑤𝐷𝑑. 
 

23. Account for inventory balance of product p at warehouse w recognizing inbound shipping 
delays (constraint IBPpWwDd) at the end of day d.  For each warehouse and day for each 𝑝 ∈
𝑃𝑊{𝑤},  

𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑+1 = 𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑 − 𝐷𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑

+ ∑ (𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑−𝛿(𝑓,𝑤) + 𝐼𝑡𝑠𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑)

𝑓∈𝐹{𝑓}

.  

Note that the ItsPpFFWWDd variables are defined only for (p, f, w, d) combinations where there are 
finished goods in transit at the beginning of the planning horizon and are scheduled to arrive at 
warehouse w on day d for each 𝑑 ∈ 𝐷𝐹𝐺𝑆{𝑝, 𝑓, 𝑤}. 

 
24 & 25. Update over storage (constraint AOSPpWwDd) or under storage (constraint AUSPpWwDd) 
of product p at warehouse w at the end of day d. For each warehouse and day for each 𝑝 ∈
𝑃𝑊{𝑤}, 

𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑 + 𝑈𝑆𝑃𝑝𝑊𝑤𝐷𝑑 − 𝐷𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑

+ ∑ (𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑−𝛿(𝑓,𝑤) + 𝐼𝑡𝑠𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑)

𝑓∈𝐹{𝑓}

≥ 𝑚𝑖𝑛𝑖𝑛𝑣𝑃𝑝𝑊𝑤 .  
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𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑 − 𝑂𝑆𝑃𝑝𝑊𝑤𝐷𝑑 − 𝐷𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑

+ ∑ (𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑−𝛿(𝑓,𝑤) + 𝐼𝑡𝑠𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑)

𝑓∈𝐹{𝑓}

≤ 𝑚𝑎𝑥𝑖𝑛𝑣𝑃𝑝𝑊𝑤 .  

Note that the ItsPpFFWWDd variables are defined only for (p, f, w, d) combinations where there are 
finished goods in transit at the beginning of the planning horizon and are scheduled to arrive at 
warehouse w on day d for each 𝑑 ∈ 𝐷𝐹𝐺𝑆{𝑝, 𝑓, 𝑤} . 

 
26. Update outstanding orders for product p at warehouse w at the end of day d (constraint 
OOUPpFFWwDd). For each warehouse and day for each 𝑝 ∈ 𝑃𝑊{𝑤} and each 𝑑 ∈ 𝐷𝐹𝐺𝑆{𝑝, 𝑓, 𝑤}, 

𝑂𝑂𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑+1

= 𝑂𝑂𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 + 𝑂𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 − 𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑−𝛿(𝑓,𝑤)

− 𝐼𝑡𝑠𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 . 
 

Note that the ItsPpFFWWDd variables are defined only for (p, f, w, d) combinations where there are 
finished goods in transit at the beginning of the planning horizon and are scheduled to arrive at 
warehouse w on day d for each 𝑑 ∈ 𝐷𝐹𝐺𝑆{𝑝, 𝑓, 𝑤}. OOPpFFWwD1 should include sum of the 
ItsPpFFWWDd values for each day with scheduled arrivals. 

 
27. Update finished goods in transit to reflect shipments and receipts (constraint GITPpFfWwDd) 
at the end of day d. For each warehouse and day for each 𝑝 ∈ 𝑃𝑊{𝑤} and each 𝑑 ∈ 𝐷𝐹𝐺𝑆{𝑝, 𝑓, 𝑤},
  

𝑇𝑟𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑+1 = 𝑇𝑟𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 + 𝑆ℎ𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 − 𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑−𝛿(𝑓,𝑤)

− 𝐼𝑡𝑠𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑.  

Note that the ItsPpFFWWDd variables are defined only for (p, f, w, d) combinations where there are 
finished goods in transit at the beginning of the planning horizon and are scheduled to arrive at 
warehouse w on day d for each 𝑑 ∈ 𝐷𝐹𝐺𝑆{𝑝, 𝑓, 𝑤}. TrPpFfWwD1 is set to sum of the ItsPpFfWWDd 

values for each day with scheduled arrivals. 
 

28. As formulated with the warehouse inventory balance constraint (23), products that arrive in a 
day may be cross-docked and shipped out immediately if there is demand for them on that day 
rather than putting them into inventory.  Such shipments could be delayed until the next day by 
adding a constraint (constraint CDPpWWDd) that delivery of product p at warehouse w in a day 
can’t exceed the beginning inventory of that product in that day. For each warehouse and day for 
each 𝑝 ∈ 𝑃𝑊{𝑤}, 

𝐷𝑒𝑙𝑃𝑝𝑊𝑤𝐷𝑑   ≤  𝐼𝑛𝑣𝑃𝑝𝑊𝑤𝐷𝑑.  

 
All variables are nonnegative.  
 
29 & 30. To facilitate extraction of the solution in the report generator, we define variable 
ARRPpFfWWDd to be the finished goods shipped from all production facilities that arrive at the 
warehouse in day d which will be shipped in this planning horizon and establish their equality in 
constraints that define inbound freight (constraint IBPpFfWWDd). We also define variable 
ARRRrSsFfDd to be the amount of raw material r shipped from supplier s to arrive at production 
facility f on day d. They are set equal to the corresponding outbound shipments as follows 
(constraint IBRrSsFfDd), 
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𝐴𝑅𝑅𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑 = 𝑆ℎ𝑝𝑃𝑝𝐹𝑓𝑊𝑤𝐷𝑑−𝛿(𝑓,𝑤).  

𝐴𝑅𝑅𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑 = 𝑆ℎ𝑝𝑅𝑟𝑆𝑠𝐹𝑓𝐷𝑑−𝜃(𝑠,𝑓).  

 
Note that variables of ItsPpFfWWDd and ItsRrSsFfDd represent goods in transit to arrive as a 
result of initial conditions, while that of ShpPpFfWWDd and ShpRrSsFfDd indicate when goods 
arrive from shipments in the current planning frame.  
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